3.1067 \(\int \frac{1}{(d+e x) \sqrt{c d^2+2 c d e x+c e^2 x^2}} \, dx\)

Optimal. Leaf size=29 \[ -\frac{1}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}} \]

[Out]

-(1/(e*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]))

________________________________________________________________________________________

Rubi [A]  time = 0.0244909, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {643, 629} \[ -\frac{1}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]),x]

[Out]

-(1/(e*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]))

Rule 643

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^(m - 1)/c^((m - 1)/2
), Int[(d + e*x)*(a + b*x + c*x^2)^(p + (m - 1)/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c,
 0] &&  !IntegerQ[p] && EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]

Rule 629

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d*(a + b*x + c*x^2)^(p +
 1))/(b*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \sqrt{c d^2+2 c d e x+c e^2 x^2}} \, dx &=c \int \frac{d+e x}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac{1}{e \sqrt{c d^2+2 c d e x+c e^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0106617, size = 18, normalized size = 0.62 \[ -\frac{1}{e \sqrt{c (d+e x)^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]),x]

[Out]

-(1/(e*Sqrt[c*(d + e*x)^2]))

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 28, normalized size = 1. \begin{align*} -{\frac{1}{e}{\frac{1}{\sqrt{c{e}^{2}{x}^{2}+2\,cdex+c{d}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x)

[Out]

-1/e/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.11979, size = 26, normalized size = 0.9 \begin{align*} -\frac{1}{\sqrt{c} e^{2} x + \sqrt{c} d e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="maxima")

[Out]

-1/(sqrt(c)*e^2*x + sqrt(c)*d*e)

________________________________________________________________________________________

Fricas [A]  time = 2.4122, size = 100, normalized size = 3.45 \begin{align*} -\frac{\sqrt{c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}{c e^{3} x^{2} + 2 \, c d e^{2} x + c d^{2} e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="fricas")

[Out]

-sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)/(c*e^3*x^2 + 2*c*d*e^2*x + c*d^2*e)

________________________________________________________________________________________

Sympy [A]  time = 1.90278, size = 41, normalized size = 1.41 \begin{align*} \begin{cases} - \frac{1}{e \sqrt{c d^{2} + 2 c d e x + c e^{2} x^{2}}} & \text{for}\: e \neq 0 \\\frac{x}{d \sqrt{c d^{2}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2),x)

[Out]

Piecewise((-1/(e*sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)), Ne(e, 0)), (x/(d*sqrt(c*d**2)), True))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError